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Abstract. Burrows and Sulston have introduced conditional block entropies H, from
information theory in order to give a quantitative measure of disorder for sequences and,
if possible, a characterization of quasicrystalline sequences, We give here some properties
conceming these block entropies and give an explicit formula for the sequences {(Hidpem
cotresponding to the Thue-Morse sequence, the Rudin—Shapiro sequence and the paperfolding
sequence. We deduce from these computations that this measure of disorder does not enable us
to distinguish between deterministic sequences even if they have different spectral properties,

1. Introduction

Burrows and Sulston have intreduced a measure from information theory in [9], Their
purpose was to give a quantitative measure of disorder for sequences and to find a
characterization of quasi-periodic sequences, or in other words, of unidimensional models
of guasicrystalline atomical structures.

This measure corresponds to a sequence of conditional block entropies H, which is
associated with a sequence # with values in a finite alphabet: the sequence (H,,) converges
towards the metrical entropy of the dynamic symbolic system associated with the initial
sequence i and the values H, are defined in terms of conditional frequencies. More
precisely, the conditional entropy H, is a measure of the uncertainty about the next symbol,
when the preceding letters are known. Thus it measures in some sense the properties of
predictability of .he Initial sequence «.

By computing the first- and second-order entropies H|, and H, for the Thue-Morse
sequence and for some generalizations of the Fibonacci sequence, Burrows and Sulston
obtained the following comparison of their ‘disorder’: among the sequences they studied,
the sequences which are quasi-periodic (or more generally, that have a discrete spectrum)
have entropy of first- and second-order lower than those which have a continuous component
in their spectrum.

But it is easily seen that these entropies A and M. are not sufficient to distinguish, for
instance, between the Rudin—Shapiro sequence and a normal sequence, i.e. a sequence such
that all blocks of the same length have the same frequency. Thus it is interesting to obtain
entropies of all orders and to compare them.,

The aim of this paper is to compute and to compare the conditional block entropies of
all orders for some automatic sequences which have distinct spectral types. The sequences
we study here are the Thue—Morse sequence, which has continuous singular spectrum, the
Rudin-Shapiro sequence and some generalizations, which have a Lebesgue spectrum and
the paperfolding sequence, which has a discrete spectrum.
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The Thue-Morse sequence (v,f},,eﬁ gives the parity of the sum of the binary digits of
the integers: if n = 3 £,2', where & = 0 or 1, then vf = }_ & mod2. The Rudin-Shapiro
sequence (vX),en counts. also modulo 2, the number of occurrences of 11 in the binary
representation of the integers, with overlaps: v® = Y gg;51 mod2. The paperfolding
sequence is obtained the following way: let us fold a sheet of paper always the same way,
for instance, right half over left. Let us code the ‘valleys’ and the ‘mountains’ that we see
when the sheet is being unfolded. This process gives rise to the the paperfolding sequence
(see, for instance, [12]).

These sequences are automatic sequences, so we will use here the underlying substitution
in order to compute the block frequencies, as in [9].

Let HT, HR and HT be respectively the sequences of conditional block entropies for
the Prouhet-Thue-Morse, the Rudin-Shapiro and the paperfolding sequences. We expect
the following inequality between HT, H® and H¥ to hold:

H < HI < H} for every n (1)

or in other words, we expect, for instance, the paperfolding sequence to show more order
than the Prouhet~Thue—Morse sequence with respect to this particular measure of disorder.

But in fact, after computation of the conditional block entrapies of all orders for these
particular automatic sequences, we note that the ordering between HX HF and HT, such
as given in (1), does not occur. In particular, we prove that these three sequences of
conditional block entropies converge with the same rate towards 0. Namely, let us recall
that these three antomatic sequences are deterministic, that is to say of zero entropy, so the
sequence (H,) converges towards O for each of theses sequences.

We conclude from this that this measure of disorder cannot allow us to distinguish
between deterministic sequences even if they have different spectral properties.

We also computed in [3, 6] block frequencies and gave an explicit formula of conditional
entropies ), for Sturmian sequences. A Sturmian sequence has exactly n 4 | factors of
length #n. In particular, the Fibonacci sequence is Sturmian. The Sturmian sequences are
generatly not substitutive, hence the method used is different: we can compute the block
frequencies, either by studying the Rauzy graph of factors [15] or by considering Sturmian
sequences as rotations. Namely, a Sturmian sequence is the itinerary of the orbit of a point
of the unit circle under a rotation of irraticnal angle w, with respect to disjoint intervals of
the unit circle of length & and | — «.

2. The sequence of block entropies

The purpose of this section is to introduce the block entropies for sequences with values
in a finite alphabet. These entropies were first introduced by Shannon [16] in 1948 in
information theory; he wanted in particular, to give a measure of the entropy of the English
language.

The frequency P(B) of a block B is defined as follows: it is the Himit, if it exists, of
the number of occurrences of this block in the first n letters of the sequence divided by #,

Let # be a sequence with values in the alphabet A = {1, ..., d}. We suppose that all
the block frequencies exist for u.

Let Plxjx; - Xp) = %‘a:—fﬁ, where x; -+ - x, is a block of non-zero probability and
x aletter. The intuitive meaning of P{x|x; - x,) is that it is the conditional ‘probability’
that the letter x follows the block x; - - x, in the sequence u.

We are going to associate two sequences of block entropies (Hnlaen and (Vi)yep with
the sequence w. Let us first recall that the entropy is defined in information theory as a
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measure both of the information yielded by the occurrence of an experiment and of the
uncertainty about the outcome of an experiment.

We call a finite block of consecutive letters of the infinite sequence u, say w =
Upq - -+ Hpyds 8 foctor, d is called the lerngth of w and is denoted by I(w). Note that
this is European terminology and that a subword consists of letters that are not necessarily
consecutive. In American terminology, the terms subword and factor are synonymous.

The entropy V, is defined as the entropy of the choice of a factor of length r of the
sequence. We thus put, for all n 2 1

Vo= D L(P(x1--xn)

where the sum is over all the factors of length # and with L (x) = —x log,(x), forall x # O
and L(0) = 0.

Now, let H, be the conditional entropy of the choice of the next symbol when we know
the (n — 1) preceding symbols. We have

Hy= " P(xi-x)Hxi + x) @
where the sum is over all the factors of length # of non-zero probability and

Hix) - x,) = ZL(P(-\‘/—’H CerXe)).
xed

Let Hy be the entropy of the choice of a letter
Ho= Y L(P(x)).

xeA
Obviously, we have Hy < 1. From the concavity of the function L, we deduce that
OsH. s Hps 1.
Furthermore, we clearly have

Hy =V -V,

for all n, by putting Vg = 0. This equality means that the conditional entropy of the choice
of the next letter, when the n preceding letters are known, is equal to the entropy of the
choice of a factor of length (n 4+ 1) minus the entropy of the choice of a factor of length .
This is a classical result in information theory (see, for instance, [16]).

Thus H is the discrete derivative of V. Note that (V)sen is an increasing sequence,
since H, =0, for all a.

It is easily shown that (H,).eny is 2 monotonic decreasing sequence of n (see, for
instance, {7]}. The intuitive meaning of this is that the uncertainty about the choice of the
next symbol decreases when the number of known preceding symbols increases; in other
words, conditional entropy decreases when the conditioning increases. We deduce from this
the existence of the limit . EToo H, Wehave V, = H,,, — H,. Thus, by taking Cesaro

means, we obtain

lim H, = lim —=.
H— 400 ne=s-k00 B
In fact, this limit which we denote by H{u), is equal to the measure-thecretic entropy £, (T)
of the one-sided shift 7 on J(u), with respect to the measure u, where 5'(u—) is the orbit
closure of u in A" and u is the T-invariant measure defined by assigning to each cylinder
the frequency of the defining factor. For more details, the reader is referred to [14], for

instance.
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Another consequence of the decreasing behaviour of { Hy)rew is the following inequality:
rn—1
nHy <3 Hi= Vo= L(P(x;-x,).
k=0

Let p(n) denote the complexity of the sequence, i.e. the function which counts the number
of factors of a sequence of given length. By concavity of the function L, we have, for all
n 2 1: V¥, £log,; p(n). Thus, we deduce the following inequality:

I RED)
n

for all n > 1. The limit Fhep(x) of the sequence '3’5*1%@, which is easily seen to exist, is
called topological entropy.
In particular, we have

V,
lim H,= lim — = H{u) < Hgp(®) = lim logy(p(n))
a—>+oo 7 n R

n=k-+00 —+00 n

This inequality is a particular case of a basic relationship between topological entropy and
measure-theoretic entropy called the variational principle.

The notion of metrical entropy for a sequence seems consequently to be more precise.
But in the cases we deal with here, we consider deterministic sequences, i.e. sequences with
zero entropy. Thus neither metrical nor topological entropy can distinguish between these
sequences. That is why it is interesting to consider the rate of convergence of the sequence
H,, towards its limit (the metrical entropy) and not only the limit itself.

3. Ultimately periodic and ‘random’ sequences

Consider first the following two extreme cases: the case of minimal disorder, i.e. the case
of ultimately periodic sequences and the case of maximal disorder, i.e. the case of ‘random’
sequences. Let us note that it is the same thing, in terms of frequencies, to consider
ultimately periodic sequences and purely periodic sequences.

The following result can easily be shown,

Proposition 1. Let u be a ultimately periodic sequence of period 2. We have H, = 0, for
allk 2 Q.

Namely, there is no uncertainty at all in the choice of the next letter. The converse is
not true. Suppose, for instance, that the frequencies of the letters are equal to 0 or 1. Then,
we have Hp = 0. The sequence (H,)nen being a decreasing sequence, we obtain H, = 0,
for all n.

But if the sequence is minimal, i.e. if all its factors appear infinitely often and with
bounded gaps, we obtain the following property.

Proposition 2. Let u be a minimal sequence such that Ay, = O for some integer ky. Then
u is a periodic sequence of pericd p(ko), where p(ko) denotes the complexity of arder o.

The proof of this statement comes from the fact that the frequencies are strictly positive
in a minimal sequence. Consider now a ‘random’ sequence or in other words, a normal
sequence: ail the blocks of given length have the same frequency. Hence the conditional
probabilities P(x/B) are equal and H, = 1, for all # = 0. It can easily be shown, by
using (2), that the converse is true. Thus, we have the following proposition.
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Proposition 3. We have H, = | for all n, if and only if the sequence « is a normal
sequence.

Therefore, in these two exireme cases, the sequence (H,).en gives a characterization
of the ultimately periodic and of the ‘random’ sequences.

4, Substitutions

Now, let us recall some definitions about substitutive sequences.

4.1. Some definitions

We consider here fixed points of substitutions.
For instance, the Thue-Morse sequence is the fixed point (i.e. the infinite iteration
(0T)*°(0)) of the substitution o7, defined on the alphabet {0, 1} by

o(0) = 01 and  o™()=10.
Its first terms are
0110100110010110-- . .
Similarly, the Fibonacci sequence is the fixed point of the substitution
o(0) = 01 and of(1) =0.

A substitution is called uniform or of constant length if all the images of the letters
have the same length. For instance, the Thue-Maorse substitution is uniform whereas the
Fibonacci substitution is not of constant length,

A sequence is called automatic if it is the image by a letter to letter projection of the
fixed point of a substitution of constant length, The word automatic comes from the fact
that an automatic sequence is generated by a finite automaton. For more details, the reader
is referred to {10].

For instance, the paperfolding and the Rudin-Shapiro sequences are automatic
sequences. Namely, the Rudin-Shapiro sequence is the image of the fixed point (¢®)®(a)
of the substitution &

aR(a) = ab
a®(p) = ac
o®(c) =db
o®(dy =dc

by the projection
pR{a) = pR(b) =0
{ PRe)=pRay=1.

Its first terms arel
0001001000011101 - - -

We give the substitution and the projection comesponding to the paperfolding sequence
in section 7.
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4.2, Special factors

We have different ways of computing the conditional entropies H,. By using equation (2),
we see that we need to know all the block frequencies of factors of given length and also
conditional probabilities. We can also deduce H, from V., and V,. But, we need therefore
to know all the block frequencies of factors of length n and n + 1. Hence we will see in
this section a more ‘economical’ way of computing H,.

A factor is called right special if it has at least two right extensions in the sequence.
For instance, it is easily seen that the factor 010 is a right special factor of the Thue-Morse
sequence (the factors 0100 and 0101 are factors of this sequence), whereas the factor 011
is always followed by the letter 0. Similarly, a factor with more than one left extension is
called left special.

Let us note here that the extension of a factor B denotes usually a factor Bx, where x
is a letter which follows the block B in the sequence. But, by an abuse of notation, from
now on we use x to mean the extension.

It is now quite easy to compute the conditionai block entropies from the frequencies
of the right special factors and of their right extensions. Namely we have the following
lemma.

Lemma 1. Let &, be the set of right special factors of length n. We have

Hy=Y_ [Z L{(P(Bx)) - L(P(B)}} :

Bed, red

Namely, if v is not a right special factor then only one of the probabilities P(vx) is
non-zero {and is thus equai to P(v)) and we therefore have

Z L(P(ux)) = L(P{vx)) = L(P{v)).
XEA

4.3. Frequencies

In [14] Queffélec gives an algorithm to compute the block frequencies of all orders of a
substitutive minimal sequence by using the matrix of the associate primitive substitution
and the Perron-Frobenius theorem.

Let us recall that the matrix associated with a substitution is the matrix whose entry
(i, ) is the number of occurrences of the letter i tn the factor o (f). A substitution o is
called primitive when its matrix M is primitive (a matrix is primitive if there exists an
integer & such that M* has strictly positive entries). In other words, this property means
that there is an integer k& such that the image by o* of every letter contains all the other
letters of the alphabet on which the substitution is defined,

The idea here is to give recurrence relations between the frequency of a factor and the
frequencies of factors of shorter length.

From the Perron-Frobenius theorem, it is easy to deduce that the letter frequencies
of a fixed point of the substitution o are the coordinates of the unique normalized right
eigenvector associated with the largest eigenvalue of the matrix of the substitution,

In the examples we deal with here, we have a nice property of ‘recognizability’. Namely,
there is a unique way of cutting enough long factors: we put bars such that between two
bars there is exactly the image by the substitution ¢ of a letter of the alphabet. For instance,
in the Thue-Morse sequence, we can cut the factor 01001 uniquely as follows:

0[10]01} = Ola " (1)o7 (0} .
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Although the *short’ factor 010 can be cut as 01|0 = o7 (M|0 or as 010 = 05 T(1).

4.4, Some lemmas

In what follows, the substitution o will always denote a substitution of length 2. A pre-
image of a word B is a factor of smallest length such that its image by the substitution
contains B.

We have the following obvious relationship between the length of a factor and the length
of its pre-image by o.

Lemuma 2. 1If B is a factor of even length, with [(B) = 2 p, then its pre-images are of length
p+1lorp.

If B is a factor of odd length, with /(B) = 2p + 1, then its pre-images are of length
p+1l

The number of occurrences of a factor in the first 2n letters of the sequence is equal
to the number of occurrences of its pre-images in the first » letters. We deduce from this
remark that, if a factor has a unique pre-image. the frequency of a block is equal to half the
frequency of its unique pre-image by the substitution. Thus, we have the following lemma.

Lemma 3. Let B be a factor with a unique pre-image B'. The frequencies of B and B’
satisfy: P(B) = f%.

Let us consider now more particularly right special factors with the lemma below.

Lemma 4. Let B be a factor with a unique pre-image B'. If the factor B is right special,
then B’ is also a right special factor and B is a suffix of o(B’). In particular, if B has even
length 2p, then B has length p.

Progf. Let us write B = xo(B')y, where x (respectively y) is either the empty word or
a fetter. If y were not the empty word, then B would have as unique right extension the
second letter of o (y). Hence, B is a suffix of o(B"). Furthermore, if B had a unique right
extension, then B would have as unique right extension the first letter of the image of the
unique extension of B'. Thus, B’ is a right special factor. O

5. The Thue—Morse sequence

Let us recall that the Thue-Morse sequence is the fixed point (o T)*°(0) of the substitution:
oT(0) = 01 and o 7(1) = 10.

First of all, the main property, which makes everything work here, is the following one,
which can easily be shown (see, for instance, [14]),

Lemma 5. Each factor of length greater than 4 has a unique pre-image.
In [11] Dekking has shown the following result.

Theorem 1. The frequencies of the factors of the Thue-Morse sequence of length #, with
241 n 2% and n > 2, take the following two values:

1 1

3.2k 6.2% "
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The factors of length 1 have frequency %

More precisely. Dekking also deduces the number of blocks of given length having each
of these frequencies from the complexity function of the Thue-Morse sequence.
We deduce from this theorem the following resuit.

Lemma 6. Let B be a right special factor of length greater than 2. Let & be such that

2t + 1 € I(B) < 2¥*!. Then, B has frequency ﬁ; and its right extensions have frequency

!
6"

Let us note that the frequencies of the right special factors take the greatest value
between the two possible ones. This seems rather natural because the spectal factors appear
more often, because of their two possible extensions.

We prove this lemma by induction for factors of length 2%: namely, if I1(B) = 2¥+1,
then its pre-image B’ has length 2% (lemma 2 and lemma 4).

For the other factors, this Jemma is a direct consequence of theorem 1: the sum of the
frequencies of the two extensions of a right special factor B is equal to the frequency of B.

The complexity of the Thue-Morse sequence satisfies the following property (see for
instance [8] and [131]).

Theorem 2. We have p(l) = 2, p(2) = 4 and p(3) = 6. For the following values, we
have, for k = 1:

o if2%+ 1< m<3.2% ), then p(n+ 1) — p(n) =4,
o if3.20-1 41 < m 2%, then p(n+ 1) — p(n) = 2.

Hence, as an immediate consequence of lemma 6 and theorem 2, we obtain the following
expression for the conditionai block entropies.

Theorem 3. We have H] =1, Hf =log,3 — £ and H] = 2. For the following values,
we have, for &k 2 1:

o if2%41<m <328, then HT = 5,

if 3.2 + 1 < m < 2, then HY = .

The first values are computed ‘by hand °, as in [9]. Next, let us recall that the conditional
block entropies are given by:

H, =Y L(P(BO))+ L(P(B1)) — L(P(B))

BeS,

where S, is the set of right special factors of length r and L{x) = —x logy(x) (lemma 1I).
Furthermore, the cardinal of S, is given by p(n + 1} = p(n).

6. The Rudin—Shapiro sequence

The Rudin-Shapiro sequence v® is the image by a projection of the fixed point #® of a
substitution of length 2. Namely, it is the image of the fixed point u® = (¢®)*®(a) of the
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substitution o®
oR{a) = ab
oR(b) = ac
ol (c) =db
oR({d) = dc

by the projection
l Pl@y=p'h) =0
pPe)=pd)=1.

For the fixed point #® everything works like in the case of the Thue~Morse sequence. In
particular, it is easily seen that each factor of length greater than 3 has a unique pre-image.

But, the Rudin—Shapiro sequence v® is obtained as the image of u® by a letter to letter
projection. Some npatural questions arise then: does a factor have a unique antecedent by
the projection? Is the image (respectively, the antecedent) of a special factor also a special
one? The answer to these questions is no. Namely, let us consider, for instance, the factor
000100 of the sequence x®. This factor comes from the two factors abacab (which has as
unique extension in v® the letter &) and babdba (which has as unique extension in v® the
letter &), Thus, this right special factor has two distinct antecedents which are not special.

But this kind of ‘perturbation’ due to the projection, appears only for small length
factors. Namely, we have the following property (see, for instance, [4]).

Theorem 4. For all n 2 8, pr(n) = pa(n) = 8r — 8. In particular, there is a bijection
between the factors of the two sequences of length greafer than 8.

For the first values, we have : pr(1) =4, pr(Q) =8, pr(n)=8n—8for3 <n 7
and pyr(l) = 2, pr(2) = 4, pr(3) = 8, pr(4) = 16, pr(5} = 24, p,r(6) = 36 and
(7} =46,

Therefore, a right special factor corresponds to a right special factor by this bijection
and two factors in bijection have the same frequency. Thus, we can show the following
result.

Theorem 5. The frequencies of the factors of the Rudin—Shapiro sequence of length r, with
2+ 1€ n <2 and n > 7, take the following two values:

B I
82F  162F

The blocks of length | have frequency -;-, the blocks of length 2 have frequency %. the
blocks of length 3 have frequency % the blocks of length 4 have frequency ﬁ or % the
blocks of length 5 have frequency 35 or 7, the blocks of length 6 have frequency &;. 35
3

or g

Proof. The corresponding property for the fixed point #® is the following one: the blocks
of length 1 have frequency -f; and the frequencies of the factors of u® of length », with
241 < n <2 and n 2 2, take the following two values:

1 1
g.2% 16,2+
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This property is proved by induction. Let us note that this result is true for blocks of
length 1 and 2.

The gre-image of a factor of length 2%+ 1 is of length 2k=14 1. Furthermore, the blocks
of length 2 have frequency %. By using lemma 3, we obtain the result that the blocks of
length 2% + 1 have frequency ﬁ;

Let us suppose now that the factors whose length is in [2*~! + 1, 2*] have frequencies
$3T of 1e3=r. Consider next a factor of length m > 3, with 2 + 1 < m < 2%+, From
lemma 2, we deduce that the length of its pre-image is in the interval [2%~1 + 1, 2% 4+ 1].
Hence its pre-image has frequency gzi= OF 3=, by using the induction hypothesis and
the resuit above. We conclude here again with the help of lemma 3.

We deduce theorem 5 from this result, by using the bijection between the fixed point
u® and the Rudin-Shapiro sequence. a

Similarly we can also show the following result.

Lemma 7. Let B be a right special factor of length greater than 8. Let k£ be such that
2t 4+ 1 < I(B) < 2%*!. Then, B has frequency g5 and its right extensions have frequency
1

16.2°

Hence we deduce the following expression for the conditional block entropies of the
Rudin-Shapiro sequence, by noticing that there are eight right special factors of given length
n, for n larger than 8.

Theorem 6. Wehave HR =1, HR =1, HR =1, H} =2-21log, 3, H} = —1+210g, 3,
HR=T7-Xlog3, HE =L+ &log,3 and HF = .
We have, for n > 8 and 2 + 1 € n € 2FH

1
HY = >
Remark, This method works also for the generalized Rudin-Shapiro sequences which
count the number of occurrences of the pattern 1% --- % 1 in the binary expansion of every
integer (see [3] and (4]). If d is the length of the pattern +- .., we abtain the result that
the conditional block entropies are uitimately equal to 2¢ times the corresponding entropies
of the classical Rudin—Shapiro sequence.

7. The paperfoiding sequence

The paperfolding sequence v® is the image of the fixed point ¥ = (¢F)*®°(a) of the
substitution &P

aP{a) = ab
of(b) = cb
ap(c) = ad
o®(d) = cd

by the projection
pRay = pRb)y =1
pR(c) = pR(d) = 0.
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We also have a bijection between the factors of length greater than 7 of the fixed point
u" and the factors of the same length of the projection v® (see [1] or [2)).

Theorem 7. For all n 27, p,r(n) = pyr(n) = 4n.
For the first values, we have pr{n) =4n, for 1 £ n £ 6, and pp(1) =2, ppr(2) =4,
pwr(3) =8, pe(4) = 12, pe(5) = 18 and p,e(6) = 23.

There is a slight difference concerning the properties of ‘recognizability’ of the fixed
point: some factors can have two pre-images. But we have the following properties.

Lemma 8. There is 2 unique way to put the bars for every factor of the fixed point «F,

Namely, the image of every letter begins with & or ¢ and ends with b or 4. Hence we
put a bar after a » or a 4 and a bar before an a or a ¢.

We deduce from this that a right (left) special factor of the fixed point ¥ has exactly
two extensions. Hence, the last (first) letters of a right (left) special factor form also a
special factor with the same extensions. Thus, by considering the extensions of the special
factors of length 2, we obtain the following lemma.

Lemma 9. The right (left) extensions of the right (left) special factors of length greater than
2 of the fixed point 4¥ are b and 4. Furthermore, the last letter of a right special factor of
length greater than 4 is a ¢.

We can characterize now the factors which have only one pre-image.

Lemma 10. A factor of u¥ has a unique pre-image if and only if this factor is not a right
special one. Furthermore, a right special factor has exactly two pre-images.

Proof.  Let us first note that an odd factor with a letter before the first bar of its cut has
only one pre-image. Namely, if such a factor B wouid have two pre-images then they
would only differ by their first letter, say xp and xj, because of lemma 8 and because of
the injectivity of o on the letters. Thus, B would have as left extensions the first letter of
oP(xp) and oF (x5), i.e. a and ¢, which contradicts lemma 9. Hence a factor having more
than one pre-image has exactly two pre-images and we show similarly that it is a right
special factor. '

Conversely, a special factor B of length greater than 4 may be written as follows
(lemma 9):

B =ylo"(B))|c
where y denotes the empty word if B is of odd length, and a letter otherwise.

It is easily seen, by using what precedes, that yo (B} has only one pre-image and
hence that B has two pre-images, which can be written as zB’b and zB'd, where 7 is the
empty word if B is of odd length. Furthermore one checks that a right special factor of
length 1, 2 or 3 has also two pre-images. 0

We can now show the following result,

Theorem 8.

e Let B be a right special factor of uF. Let k be such that 2% < I(B) < 2%t! — 1. Then
B has frequency al—{,,"k— and its right extensions have frequency ﬁ;
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e More generally the frequencies of the factors of the paperfolding sequence v¥ of length
n, with 28 + 1 < n < 2**!, for n 2 7, take the following two values
1 l
4.2% 8.2k’
The blocks of length 1 have frequency % the blocks of length 2 have frequency %, the
blocks of length 3 have frequency -1% or '1%' the blocks of length 4 have frequency T%
or §, the blocks of length 5 have frequency 35, 7% or &, the blocks of length 6 have

frequency 77 OF !l

Proof. 'We prove this theorem by showing here again the corresponding property for the
fixed point u®.

Let us prove the first assertion of theorem 8. It is easily shown that this result is true
for right special factors of u® of length 1, 2, 3. Let us suppose now that it is true for right
special factors of length in [2¥1,2F — 1],

Let k, greater than 2, be such that 2* < I(B) € 2%*! — |, where B is a right special
factor of uf. Let us write B as

B = ylo?(B)c

where y denotes the empty word if B is of odd length, and a letter otherwise (lemma 9).
We have seen that the two pre-images of B are x8’fb and x B'd, where x is the empty word
if B is of odd ilength.

The factor x B’ is thus a right special factor of length the integral part of {(8)/2, which
belongs to the interval [2%~!, 2% — 1]. From the induction hypothesis, we have

1
4.2kt
The frequencies of B, xB’, x B'b and x B'd satisfy the following relationships:
P(xB'b)+ P(xB'd) P(xB) 1
2 T2 T g2t

P(xBYy = =2P(xB'b) =2P(xB'd).

P(B) =

1e.
1
Tk
Furthermore, Bb (respectively Bd) has as unique pre-image x B'b (respectively x B'd),
thus we have, as expected

P(B'B) 1
2 8.2k

Let us consider now factors of u¥ of length grcater than 4 which are not right special,
We know that these factors have a unique pre-image; we thus have the usual equality
between the frequencies: if B a factor of unique pre-image B', then P(B) =<

The idea is here to show first that the blocks of length 2% have only one frequency,
ie. . It is easily shown, by induction that the frequencies of the factors of length 2%
and 2" + 1 take the two values -—; and ﬁ; We can conclude then by considering the
complexity: we have p(2¥) = 4 2% factors of length 2* (see theorem 7); hence only one
frequency is possible, namely W-

The rest of the proof is exactly as that for theorem 5. O

P(B) =

P(Bb) = = P(Bd).
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We can now deduce from the above results the expression of the conditional block
entropies, by noticing that there are four right special factors of given length greater than 7.

Theorem 9. We have Hf = 1, H = 1, H = 2 — }iog3,
H = -1 +3log,3, Hf = § ~ Zlog,3, HY = = + & log,3 and Hf = &.
We have, forn 2 7 and 28 < n < 281 = 1:

1

Remark. Let us note the following relationship between HX and HY.

Proposition 4. We have HY = HR,,, for all n.

8. Conclusion

Let us come back to the initial question of the comparison of conditional block entropies
for these sequences. We have HY < HT £ HR, for n < 8. But. for n > 9, this ordering
does not hold. In particular, we have

R P_ 1 T _ 1
In fact, we see that there is no relation of order between HR®, HPT and HT. From
Proposition 4, we deduce that HF < HR and that for almost n, this inequality becomes an
equality. More precisely,

HR
e forn = 2% wehave Hf = 5,

o but for n # 2%, we have HF = HF.

Furthermore, we see that there is a kind of shuffle between the values of H® (and
consequently of HF) and the values of HT:

o for 2+ 1< n <3257, we have H] = $HR = $H],
o and for 3281+ 1 < n <2, we have H = LH} = H!.

Acknowledgments

I would like to thank the referee for many useful comments and G Didier whose software
for exhaustive enumeration of blocks has been of great help.

References

[1] Allouche J-P 1992 The number of factors in a paperfolding sequence Bull. Austr. Math. Soc. 46 23-32

{21 Allouche J-P and Bousquet-Mélou M 1994 Canonical positions for the factars in the paperfolding sequences
Bull. Belg, Math. Suc, 1 145-64

[3] Allouche J-P and Liardet P 1991 Generalized Rudin-Shapiro sequences Acta Arith, 60 1-27

[4] Allouche J-P and Shallit J 1993 Complexité des suites de Rudin—Shapiro généralisées J. Théorie des Nombres
de Bordeaux § 283-302

[5] Berthé V 1954 Fonctions de Carlitz et automates. Entropies conditionnelles Thése Université Bordeaux I

[6] Berthé V 1994 Fréquences des facteurs des suites sturmiennes Preprinr 94.37 Laboratoire de Mathématiques
Discrétes

[7] Billingsley P 1965 Ergodic Theory and Information (New York: Wiley)

[8] Brlek 5 1989 Enumeration of factors in the Thue—Morse word Discrete Appl. Marh. 24 83-96



8006 V Berthé

(91

[10]
(1]

[12]
[13]
[14]

{15]
i16]

Burrows B L and Sulston K W 1991 Measures of disorder in non-periodic sequences J. Phys. A: Math, Gen,
24 3979-87

Cabhamn A 1972 Uniform tag sequences Math, Syst. Theor, 6 164-192

Dekking F M 1992 On the Prochet-Thue-Morse Measure Acta Universitatis Carolinae. Mathematica et
Physica 33 3540

Dekking F M, Mendés France M and van der Poorten A J 1982 FOLDS! Math. Intell, 4 130-38, 173-81,
190-5

de Luca A and Varrichio S 1989 Some combinatorial properties of the Thue-Morse sequence Thenr, Comput,
Sci. 63 33348

Queffélec M 1987 Substitution dynamical systems. Spectral analysis Springer Lecture Notes in Mathematics
1294 (Berlin: Springer)

Rauzy G 1983 Suites 4 termes dans un alphabet fini Sém. de Théorie des Nombres de Bordeauy 25-01-25-16

Shannon C E 1948 A mathematical theory of communication Bell Syst. Tech, J. 27 379-423, 623-56



