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Conditional entropy of some automatic sequences 

Valtrie Berth6 
Laboratoire de Mathematiques Discrhtes, CNRS-UPR 9016, Case 930, 163 avenue de Luminy, 
F-13288 Marseille Cedex 9. France 

Received 20 July 1994 

Abstract. Burrows and Sulston have introduced conditional block entropies H, from 
information theory in order to give a quantitltive measure of disorder for sequences and, 
if possible. a chamcterization of quasicrystalline sequences. We give here some properties 
concerning t h s e  block entropies and give an explicit formula for the sequences (Hn)nen 
corresponding lo the Thue-Morse sequence, the Rudin-Shapiro sequence and the paperfolding 
sequence. We deduce from these computations that this measure of disorder does not enable us 
to distinguish between deterministic sequences even if  they have different spectral propenies. 

1. Introduction 

Burrows and Sulston have introduced a measure from information theory in [9]. Their 
purpose was to give a quantitative measure of disorder for sequences and to find a 
characterization of quasi-periodic sequences, or in other words, of unidimensional models 
of quasicrystalline atomical structures. 

This measure corresponds to a sequence of conditional block entropies H. which is 
associated with a sequence U with values in a finite alphabet: the sequence (H,) converges 
towards the metrical entropy of the dynamic symbolic system associated with the initial 
sequence U and the values H. are defined in terms of conditional frequencies. More 
precisely, the conditional entropy H, is a measure of the uncertainty about the next symbol, 
when the preceding letters are known. Thus it measures in some sense the properties of 
predictability of he initial sequence U. 

By computing the first- and second-order entropies H, and H2 for the Thue-Morse 
sequence and for some generalizations of the Fibonacci sequence, Burrows and Sulston 
obtained the following comparison of their 'disorder': among the sequences they studied, 
the sequences which are quasi-periodic (or more generally, that have a discrete spectrum) 
have entropy of first- and second-order lower than those which have a continuous component 
in their spectrum. 

But i t  is easily seen that these entropies HI and H2 are not sufficient to distinguish, for 
instance, between the RudinShapiro sequence and a normal sequence, i.e. a sequence such 
that all blocks of the same length have the same frequency. Thus it is interesting to obtain 
entropies of all orders and to compare them. 

The aim of this paper is to compute and to compare the conditional block entropies of 
all orders for some automatic sequences which have distinct spectral types. The sequences 
we study here are the Thue-Morse sequence, which has continuous singular spectrum, the 
Rudindhapiro sequence and some generalizations, which have a Lebesgue spectrum and 
the paperfolding sequence, which has a discrete spectrum. 

0305447W94/247993t14$1950 @ 1994 IOP Publishing Ltd 7993 
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The Thue-Morse sequence ( u ~ ) ~ ~ N  gives the parity of the sum of the binary digits of 
the integers: if n = ;T:&,Z', where &i = 0 or I ,  then U: = mod2. The RudinShapiro 
sequence ( u : ) ~ ~ N  counts. also modulo 2, the number of occurrences of 11  in the binary 
representation of the integers, with overlaps: U," = C&i&i+, mod2. The paperfolding 
sequence i s  obtained the following way: let us fold a sheet of paper always the same way, 
for instance, right half over left. Let us code the 'valleys' and the 'mountains' that we see 
when the sheet is being unfolded. This process gives rise to the the paperfolding sequence 
(see, for instance, [12]). 

These sequences are automatic sequences, so we will use here the underlying substitution 
in order to compute the block frequencies, as in 191. 

Let UT, H R  and HP be respectively the sequences of conditional block entropies for 
the Prouhet-Thue-Morse, the Rudin-Shapiro and the paperfolding sequences. We expect 
the following inequality between HT, HR and H P  to hold: 

H: 4 H: < H," for every n ( 1 )  
or in other words, we expect, for instance, the paperfolding sequence to show more order 
than the Prouhet-Thue-Morse sequence with respect to this particular measure of disorder. 

But in fact, after computation of the conditional block entropies of all orders for these 
particular automatic sequences, we note that the ordering between HR, H P  and HT, such 
as given in ( I ) ,  does not occur. In particular, we prove that these three sequences of 
conditional block entropies converge with the same rate towards 0. Namely, let us recall 
that these three automatic sequences are deterministic, that i s  to say of zero entropy, so the 
sequence (H,) converges towards 0 for each of theses sequences. 

We conclude from this that this measure of disorder cannot allow us to distinguish 
between deterministic sequences even if they have different spectral properties. 

We also computed in [5 ,6]  block frequencies and gave an explicit formula of conditional 
entropies H, for Sturmian sequences. A Sturmian sequence has exactly n + 1 factors of 
length n. In particular, the Fibonacci sequence is Sturmian. The Sturmian sequences are 
generally not substitutive, hence the method used is different: we can compute the block 
frequencies, either by studying the Rauzy graph of factors [I51 or by considering Sturmian 
sequences as rotations. Namely, a Sturmian sequence is the itinerary of the orbit of a point 
of the unit circle under a rotation of irrational angle a', with respect to disjoint intervals of 
the unit circle of length a' and 1 - a'. 

2. The sequence of block entropies 

The purpose of this section is to introduce the block entropies for sequences with values 
in a finite alphabet. These entropies were first introduced by Shannon [I61 in  1948 in 
information theory; he wanted in particular, to give a measure of the entropy of the English 
language. 

The frequency P ( B )  of a block B is defined as follows: it is the limit, if it exists, of 
the number of occurrences of this block in the first n letters of the sequence divided by n. 

Let U be a sequence with values in the alphabet A = { I ,  . . . , 4. We suppose that all 
the block frequencies exist for U .  

Let P ( x l x ,  , . .x,J = m, where XI . . ' x ,  is a block of non-zero probability and 
x a letter. The  intuitive meaning of P ( x  Ix,  . . . x.) is that it is the conditional 'probability' 
that the letter x follows the block X I  . . . x, in the sequence U .  

We are going to associate two sequences of block entropies ( H n ) o E ~  and ( V n ) , , e ~  with 
the sequence U .  Let us first recall that the entropy is defined in information theory as a 
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measure both of the information yielded by the occurrence of an experiment and of the 
uncertainty about the outcome of an experiment. 

We call a finite block of consecutive letters of the infinite sequence U ,  say w = 
u ~ , . ~  . . . untd, a facror; d is called the length of w and is denoted by l ( w ) .  Note that 
this is European terminology and that a subword consists of letters that are not necessarily 
consecutive. In  American terminology, the terms subword and factor are synonymous. 

The entropy V,, is defined as the entropy of the choice of a factor of length n of the 
sequence. We thus put, for all n > 1 

where the sum is over all the factors of length n and with L ( x )  = -x log&), for all x # 0 
and L(0) = 0. 

Now, let H, be the conditional entropy of the choice of the next symbol when we know 
the (n  - 1) preceding symbols. We have 

H, = ~ ' P ( x l . . . x . ) H ( x l  . . .  x, )  (2) 

where the sum is over all the factors of length n of non-zero probability and 

H ( x , . . . x , ) = C L ( P (  . ~ / x l  " . x n ) ) .  
X S A  

Let HO be the entropy of the choice of a letter 

Obviously, we have HO < 1. From the concavity of the function L ,  we deduce that 
O < H , < H o < l .  

Furthermore, we clearly have 

for all n. by putting VO = 0. This equality means that the conditional entropy of the choice 
of the next letter, when the n preceding letters are known. is equal to the entropy of the 
choice of a factor of length ( n  + 1) minus the entropy of the choice of a factor of length n. 
This is a classical result i n  information theory (see, for instance, [16]). 

Thus H is the discrete derivative of V .  Note that (V,,),,, is an increasing sequence, 
since H, > 0, for all n.  

It is easily shown that (H&N is a monotonic decreasing sequence of n (see, for 
instance, [7]). The intuitive meaning of this is that the uncertainty about the choice of the 
next symbol decreases when the number of known preceding symbols increases; in other 
words, conditional entropy decreases when the conditioning increases. We deduce from this 
the existence of the limit lim H,. We have V, = Hnti - H,. Thus, by taking CesAro 
means, we obtain 

n-+ t m  

V" lim Hn = lim - 
n-+b)  ~--L+M n 

In fact. this limit which we denote - by H ( u ) ,  is equal to the measure-theoretic - entropy h,(T) 
of the one-sided shift T on O(u) ,  with respect to the measure p, where O ( u )  is the orbit 
closure of U in AN and p is the T-invariant measure defined by assigning to each cylinder 
the frequency of the defining factor. For more details, the reader is referred to [ 141, for 
instance. 
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Another consequence of the decreasing behaviour of ( Hn).E~ is the following inequality: 

Let p ( n )  denote the complexity of the sequence, i.e. the function which counts the number 
of factors of a sequence of given length. By concavity of the function L, we have, for all 
n > I :  V, < log, p ( n ) .  Thus, we deduce the following inequality: 

for all n > 1. The limit Htop(u) of the sequence T, which is easily seen to exist, is 
called topological entropy. 

In particular, we have 

This inequality is a particular case of a basic relationship between topological entropy and 
measure-theoretic entropy called the variational principle. 

The notion of metrical entropy for a sequence seems consequently to be more precise. 
But in the cases we deal with here, we consider deterministic sequences, i.e. sequences with 
zero entropy. Thus neither metrical nor topological entropy can distinguish between these 
sequences. That is why it is interesting to consider the rate of convergence of the sequence 
H, towards its limit (the metrical entropy) and not only the limit itself, 

3. Ultimately periodic and 'random' sequences 

Consider first the following two extreme cases: the case of minimal disorder, i.e. the case 
of ultimately periodic sequences and the case of maximal disorder, i.e. the case of 'random' 
sequences. Let us note that it is the same thing,  in terms of frequencies, to consider 
ultimately periodic sequences and purely periodic sequences. 

The following result can easily be shown. 

Proposition 1. Let ii be a ultimately periodic sequence of period Q. We have Hi = 0, for 
all k > Q. 

Namely, there is no uncertainty at all in the choice of the next letter. The converse is 
not true. Suppose, for instance, that the frequencies of the letters are equal to 0 or 1. Then, 
we have HO = 0. The sequence (H&N being a decreasing sequence, we obtain H ,  = 0. 
for all n. 

But if the sequence is minimal, i.e. if all its factors appear infinitely often and with 
bounded gaps, we obtain the following property. 

Proposition 2. Let U be a minimal sequence such that H,, = 0 for some integer ko. Then 
U is a periodic sequence of period p(ko) ,  where p(ko)  denotes the complexity of order ko. 

The proof of this statement comes from the fact that the frequencies are strictly positive 
in a minimal sequence. Consider now a 'random' sequence or in other words, a normal 
sequence: all the blocks of given length have the same frequency. Hence the conditional 
probabilities P ( x / B )  are equal and H, = I ,  for all n > 0. It can easily be shown, by 
using (2). that the converse is true. Thus, we have the following proposition. 
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Proposition 3. We have Hn = 1 for all n ,  if and only if the sequence U is a normal 
sequence. 

Therefore, in these two extreme cases, the sequence ( H , , ) . E ~  gives a characterization 
of the ultimately periodic and of the ‘random’ sequences. 

4. Substitutions 

Now, let us recall some definitions about substitutive sequences. 

4.1. Some definitions 

We consider here fixed points of substitutions. 

( U ’ ) ~ ( O ) )  of the substitution uT, defined on the alphabet {O. 1) by 

uT(0) = 01 and ~ ’ ( 1 )  = IO 

For instance, the ?hue-Morse sequence is the fixed point (i.e. the infinite iteration 

Its first terms are 

0110100110010110.~~ . 
Similarly, the Fibonacci sequence is the fixed point of the substitution 

~ ~ ( 0 )  = 01 and uF(I) = 0. 

A substitution is called uniform or of constant length if all the images of the letters 
have the same length. For instance, the ?hue-Morse substitution is uniform whereas the 
Fibonacci substitution is not of constant length. 

A sequence is called automatic if it is the image by a letter to letter projection of the 
fixed point of a substitution of constant length, The word automatic comes from the fact 
that an automatic sequence is generated by a finite automaton. For more details, the reader 
is referred to [IO]. 

For instance, the paperfolding and the Rudin-Shapiro sequences are automatic 
sequences. Namely, the Rudin-Shapiro sequence is the image of the fixed point (uR)”(a) 
of the substitution uR 

O R @ )  = a b  

a R ( b )  = ac 

o R ( c )  = db 

u R ( d )  = dc 

p y a )  = pR(b)  = 0 

pR(c) = p R ( d )  = 1 .  

1 
by the projection 

[ ,  
Its first terms are 

0001001000011101~~~ . 
We give the substitution and the projection corresponding to the paperfolding sequence 

in section 7. 
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4.2. Special factors 

We have different ways of computing the conditional entropies H.. By using equation (Z), 
we see that we need to know all the block frequencies of factors of given length and also 
conditional probabilities. We can also deduce H,, from Vn+l and V,. But, we need therefore 
to know all the block frequencies of factors of length n and n + I .  Hence we will see in 
this section a more 'economical' way of computing H.. 

A factor is called right special if it has at least two right extensions in the sequence. 
For instance, it is easily seen that the factor 010 is a right special factor of the ?'hue-Morse 
sequence (the factors 0100 and 0101 are factors of this sequence), whereas the factor 01 1 
is always followed by the letter 0. Similarly, a factor with more than one left extension is 
called lefl special. 

Let us note here that the extension of a factor B denotes usually a factor B x .  where x 
is a letter which follows the block B in the sequence. But, by an abuse of notation, from 
now on we use x to mean the extension. 

It is now quite easy to compute the conditional block entropies from the frequencies 
of the right special factors and of their right extensions. Namely we have the following 
lemma. 

Lemma I .  Let So be the set of right special factors of length n. We have 

Namely, if U is not a right special factor then only one of the probabilities P ( u x )  is 
non-zero (and is thus equal to P ( u ) )  and we therefore have 

L ( P ( v x ) )  = L ( P ( u x ) )  = L(P(U) ) .  
rcd 

4.3. Frequencies 

In [ 141 Queffdec gives an algorithm to compute the block frequencies of all orders of a 
substitutive minimal sequence by using the matrix of the associate primitive substitution 
and the Perron-Frobenius theorem. 

Let us recall that the matrix associated with a substitution is the matrix whose entry 
(i. j )  is the number of occurrences of the letter i in the factor o( j ) .  A substitution o is 
called primitive when its matrix M is primitive (a matrix is primitive if there exists an 
integer k such that M i  has strictly positive entries). In other words, this property means 
that there is an integer k such that the image by uk of every letter contains all the other 
letters of the alphabet on which the substitution is defined. 

The idea here is to give recurrence relations between the frequency of a factor and the 
frequencies of factors of shorter length. 

From the Perron-Frobenius theorem, it is easy to deduce that the letter frequencies 
of a fixed point of the substitution U are the coordinates of the unique normalized right 
eigenvector associated with the largest eigenvalue of the matrix of the substitution. 

In the examples we deal wi:h here, we have a nice property of 'recognizability'. Namely, 
there is a unique way of cutting enough long factors: we put bars such that between two 
bars there is exactly the image by the substitution o of a letter of the alphabet. For instance, 
in the Thue-Morse sequence, we can cut the factor 01001 uniquely as follows: 

0~10~011 = o l u ~ ~ l ) 1 u ~ ( o ) .  
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Although the 'short' factor 010 can be cut as 0110 = aT(0)IO or as 0110 = OoT(l). 

4.4. Some lemmas 

In what follows, the substitution o will always denote a substitution of length 2. A pre- 
image of a word B is a factor of smallest length such that its image by the substitution 
contains B. 

We have the following obvious relationship between the length of a factor and the length 
of its pre-image by U .  

Lemma 2. If B is a factor of even length, with l ( B )  = 2p,  then its pre-images are of length 

If B is a factor of odd length, with 1(B) = 2p + 1, then its pre-images are of length 
p + I o r p .  

p + l .  

The number of occurrences of a factor in the first 2n letters of the sequence is equal 
to the number of occurrences of its pre-images in the first n letters. We deduce from this 
remark that, if a factor has a unique pre-image. the frequency of a block is equal to half the 
frequency of its unique pre-image by the substitution. Thus, we have the following lemma. 

Le" 3. Let B be a factor with a unique pre-image B'. The frequencies of B and B' 
satisfy: P ( B )  = F. 

Let us consider now more particularly right special factors with the lemma below. 

Lemma 4. Let B be a factor with a unique pre-image B'. If the factor B is right special, 
then B' is also a right special factor and B is a suffix of o(B'). In particular, if B has even 
length 2p, then B' has length p. 

Proof: Let us h t e  B = xo(B')y ,  where x (respectively y )  is either the empty word or 
a letter. If y were not the empty word, then B would have as unique right extension the 
second letter of u(y). Hence, B is a suffix of o(B ' ) .  Furthermore, if B' had a unique right 
extension, then B would have as unique right extension the first letter of the image of the 

0 unique extension of B'. Thus, B' is a right special factor. 

5. The The-Morse sequence 

Let us recall that the Thue-Morse sequence is the fixed point (uT)"(0) of the substitution: 
~ ' ( 0 )  = 01 and ~ ' ( 1 )  = 10. 

First of all, the main property, which makes everything work here, is the following one, 
which can easily be shown (see, for instance, [14]). 

Lemma 5. Each factor of length greater than 4 has a unique pre-image. 

In [ 111 Dekking has shown the following result. 

Theorem 1. The frequencies of the factors of the Thue-Morse sequence of length n,  with 
Z k  + 1 < n f 2k+' and n > 2, take the following two values: 

1 - 1 - 
3.2k 6 . r  
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The factors of length 1 have frequency $. 

More precisely. Dekking also deduces the number of blocks of given length having each 

We deduce from this theorem the following result. 
of these frequencies from the complexity function of the Thue-Morse sequence. 

Lemma 6. Let B be a right special factor of length greater than 2. Let k be such that 
2' + 1 < I(B) < 2"+'. Then, B has frequency & and its right extensions have frequency 

w. I 

Let us note that the frequencies of the right special factors take the greatest value 
between the two possible ones. This seems rather natural because the special factors appear 
more often, because of their two possible extensions. 

We prove this lemma by induction for factors of length Zk: namely, if I ( B )  = 2'+', 
then its pre-image E' has length 

For the other factors, this lemma is a direct consequence of theorem 1: the sum of the 
frequencies of the two extensions of a right special factor B is equal to the frequency of B. 

The complexity of the Thue-Morse sequence satisfies the following property (see for 
instance [SI and [131). 

Theorem 2. We have p(1) = 2, p ( 2 )  = 4 and p ( 3 )  = 6. For the following values, we 
have, for k 2 1: 

(lemma 2 and lemma 4). 

if 2' + 1 < m < 3.Zk-', then p ( n  + 1) - p ( n )  = 4, 
if 3.2k-1 + 1 < m < 2k+', then p(n  + 1) - p(n)  = 2. 

Hence, as an immediate consequence of lemma 6 and theorem 2. we obtain the following 
expression for the conditional block entropies. 

Theorem 3. We have H ,  = 1, HT = log, 3 - 3 and H z  = $. For the following values, 
we have, for k > 1: 

if + 1 < m < 3.2"-', then H; = 6, 
if 3.2'-' + 1 < m < Zkt', then H,' = &. 
The first values are computed 'by hand ', as in [9]. Next, let us recall that the conditional 

block entropies are given by: 

SSS" 

where S. is the set of right special factors of length n and L ( x )  = --x log,(x) (lemma 1). 
Furthermore, the cardinal of S, is given by p ( n  + 1) - p(n) .  

6. The Rudin-Shapiro sequence 

The Rudin-Shapiro sequence is the image by a projection of the fixed point K~ of a 
substitution of length 2, Namely, it is the image of the fixed point uR = (&"(a) of the 
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substitution uR 
uR(a) = a b  

uR(b)  = ac 

uR(c)  = db 

uR(d)  = dc 

pp(a )  = pp(b )  = 0 

pP(c)  = pp(d )  = I .  

I 
by the projection 

I 
For the fixed point uR everything works like in the case of the Thue-Morse sequence. In 
particular, it is easily seen that each factor of length greater than 3 has a unique pre-image. 

But, the RudinShapiro sequence uR is obtained as the image of uR by a letter to letter 
projection. Some natural questions arise then: does a factor have a unique antecedent by 
the projection? Is the image (respectively, the antecedent) of a special factor also a special 
one? The answer to these questions is no. Namely, let us consider, for instance, the factor 
000100 of the sequence uR. This factor comes from the two factors abacab (which has as 
unique extension in uR the letter d )  and babdba (which has as unique extension in uR the 
letter b) .  Thus, this right special factor has two distinct antecedents which are not special. 

But this kind of 'perturbation' due to the projection, appears only for small length 
factors. Namely, we have the following property (see, for instance, [4]). 

Theorem4 For all n 8, p,~(n) = pun(") = 8n - 8. In particular, there is a bijection 
between the factors of the two sequences of length greater than 8. 

For the first values, we have : p,B(1) = 4, p,~ ( f  = 8, p,~(n)  = 8n - 8 for 3 < n < 7 
and p " ~ ( 1 )  = 2, p , p ( Z )  = 4, p,~(3) = 8, p,~(4) = 16, p , ~ ( 5 )  = 24, p,~(6) = 36 and 
pun (7) = 46. 

Therefore, a right special factor corresponds to a right special factor by this bijection 
and two factors in bijection have the same frequency. Thus, we can show the following 
result. 

Theorem 5. The frequencies of the factors of the RudinShapiro sequence of length n, with 
2k + 1 g n 6 Zk+' and n > 7, take the following two values: 

I - 1 -- 
8.2k 16.2k ' 

The blocks of length 1 have frequency i, the blocks of length 2 have frequency a. the 
blocks of length 3 have frequency i, the blocks of length 4 have frequency & or 6 ,  the 
blocks of length 5 have frequency 
or 

Proof. The corresponding property for the fixed point uR is the following one: the blocks 
of length 1 have frequency $ and the frequencies of the factors of uR of length n, with 
2k + 1 6 n 6 2k+' and n 2 2, take the following two values: 

or &, the blocks of length 6 have frequency A. 
3 

1 - 1 - 
a.2k 16.2k ' 
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This property is proved by induction. Let us note that this result is true for blocks of 
length I and 2. 

The gre-image of a factor of length 2' + 1 is of length 2'-' + I .  Furthermore, the blocks 
of length 2 have frequency i .  By using lemma 3, we obtain the result that the blocks of 
length Zk + 1 have frequency &. 

Let us suppose now that the factors whose length is in [2'-' + 1,2'] have frequencies 
or 6. Consider next a factor of length m > 3, with 2' + 1 < m < Zkt'. From 

lemma 2. we deduce that the length of its pre-image is in the interval [2'-' + 1. Zk + I]. 
Hence its pre-image has frequency & or h, by using the induction hypothesis and 
the result above. We conclude here again with the help of lemma 3. 

We deduce theorem 5 from this result, by using the bijection between the fixed point 

1 

uR and the Rudin-Shapiro sequence. 

Similarly we can also show the following result. 

Lemma 7. Let B be a right special factor of length greater than 8. Let k be such that 
2' + 1 < I (B)  < 2'+'. Then, B has frequency & and its right extensions have frequency 

m. 
Hence we deduce the following expression for the conditional block entropies of the 

Rudin-Shapiro sequence. by noticing that there are eight right special factors of given length 
U, for n larger than 8. 

Theorem 6. We have Ht = 1, H$ = I ,  H: = 1 , Hp = 2- Iog,3, HJ = -4+$log,3, 
HP = 5 - $ log, 3, H: = $ + $log, 3 and H; = A. 

I 

We have, for n 8 and ZX f 1 < n < 2'+' 

Remark. This method works also for the generalized Rudin-Shapiro sequences which 
count the number of occurrences of the pattern 1 * .  . . * 1 in the binary expansion of every 
integer (see [3] and 141). If d is the length of the pattern c .  ' '  *, we obtain the result that 
the conditional block entropies are ultimately equal to 2d times the corresponding entropies 
of the classical RudinShapiro sequence. 

7. The paperfolding sequence 

The paperfolding sequence up is the image of the fixed point up = (aP)"(a) of the 
substitution up 

op(a) = a b  

op(b )  = cb 

up@) =ad 

up(d) = cd 

pR(a) = pR(b) = 1 

pR(c) = pR(d)  = 0. 

I 
by the projection 
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We also have a bijection between the factors of length greater than 7 of the fixed point 
up  and the factors of the same length of the projection up (see [ l ]  or [Z]). 

Theorem 7. For all n > 7, p,p(n) = p , h )  = 4n. 

p ,~ (3 )  = 8, ps(4)  = 12, pup@) = 18 and pup@) = 23. 
For the first values, we have pUp(n) = 4n, for 1 6 n < 6, and p , ~ ( l )  = 2, p , ~ ( 2 )  = 4, 

There is a slight difference concerning the properties of 'recognizability' of the fixed 
point: some factors can have two pre-images. But we have the following properties. 

Lemma 8. There is a unique way to put the bars for every factor of the fixed point up 

Namely, the image of every letter begins with a or c and ends with b or d. Hence we 
put a bar after a b or a d and a bar before an a or a c. 

We deduce from this that a right (left) special factor of the fixed point up has exactly 
two extensions. Hence, the last (first) letters of a right (left) special factor form also a 
special factor with the same extensions. Thus, by considering the extensions of the special 
factors of length 2, we obtain the following lemma. 

Lemma 9. The right (left) extensions of the right (left) special factors of length greater than 
2 of the fixed point up are b and d. Furthermore, the last letter of a right special factor of 
length greater than 4 is a c. 

We can characterize now the factors which have only one pre-image. 

Lemma 10. A factor of up  has a unique pre-image if and only if this factor is not a right 
special one. Furthermore, a right special factor has exactly two pre-images. 

Proof: Let us first note that an odd factor with a letter before the first bar of its cut has 
only one pre-image. Namely, if such a factor B would have two pre-images then they 
would only differ by their first letter, say xg  and x;, because of lemma 8 and because of 
the injectivity of up on the letters. Thus, B would have as left extensions the first letter of 
uP(xo) and u'(x;), i.e. a and c, which contradicts lemma 9. Hence a factor having more 
than one pre-image has exactly two pre-images and we show similarly that it is a right 
special factor. 

Conversely, a special factor B of length greater than 4 may be written as follows 
(lemma 9): 

B = y/oP(B')Ic 

where y denotes the empty word if B is of odd length, and a letter otherwise. 
It is easily seen, by using what precedes, that y u p ( B ' )  has only one pre-image and 

hence that B has two pre-images, which can be written as zB'b and zB'd, where z is the 
empty word if B is of odd length. Furthermore one checks that a right special factor of 

0 length 1, 2 or 3 has also two pre-images. 

We can now show the following result. 

Theorem 8. 

Let B be a right special factor of up.  Let k be such that 2!' 6 l ( B )  6 Zk+' - 1. Then 
B has frequency & and its right extensions have frequency &. 
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More generally the frequencies of the factors of the paperfolding sequence up of length 
n, with 2k + 1 < n 6 2'+'. for n > 7, take the following two values 

I - I - 
4.2' 8 . r  

The blocks of length 1 have frequency 4, the blocks of length 2 have frequency 4, the 
blocks of length 3 have frequency 
or i, the blocks of length 5 have frequency $, or $, the blocks of length 6 have 
frequency 3 or E. 

or &- the blocks of length 4 have frequency 

1 1  

Proof. We prove this theorem by showing here again the corresponding property for the 
fixed point uR. 

Let us prove the first assertion of theorem 8. It is easily shown that this result is true 
for right special factors of uR of length I ,  2, 3. Let us suppose now that it is true for right 
special factors of length in [F', 2' - I]. 

Let k .  greater than 2, be such that 2' < l ( B )  < 2'+' - I ,  where B is a right special 
factor of up. Let us write B as 

B = yluP(B')Ic 

where y denotes the empty word if B is of odd length, and a letter otherwise (lemma 9). 
We have seen that the two pre-images of B are xB'b and xB'd, where x is the empty word 
if B is of odd length. 

The factor xB' is thus a right special factor of length the integral part of 1(B)/2, which 
belongs to the interval [2'-', '2' - 11. From the induction hypothesis, we have 

P ( x B ' )  = - ' - - 2P(xB'b)  = 2P(xB'd)  
4.2'-' 

The frequencies of B ,  xB' ,  xB'b and xB'd satisfy the following relationships: 

1 =-- -- P(xB'b)  + P(xB'd)  P (xB' )  
2 2 8.2'-] 

P ( B )  = 

i.e. 
1 

8.2k . P ( B )  = - 

Furthermore, Bb (respectively B d )  has as unique pre-image xB'b (respectively xB'd). 
thus we have, as expected 

Let us consider now factors of up  of length greater than 4 which are not right special. 
We know that these factors have a unique pre-image; we thus have the usual equality 
between the frequencies: if B a factor of unique pre-image B', then P(B) = y .  

The idea is here to show first that the blocks of length 2' have only one frequency, 
i.e. A. It is easily shown, by induction, that the frequencies of the factors of length 2k 
and 2' + 1 take the two values & and &. We can conclude then by considering the 
complexity: we have ~ ( 2 ' )  = 4.2' factors of length Zk (see theorem 7); hence only one 
frequency is possible, namely A. 

0 The rest of the proof is exactly as that for theorem 5 .  
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We can now deduce from the above results the expression of the conditional block 
entropies. by noticing that there are four right special factors of given length greater than 7. 

Theorem 9. We have H[ = 1, HP = 1, Hf = 2 - log23, 
H ; = - I + J ]  Og23, H,' = - & lOg23, Hp = & + & l0g,3 and H: = $, 

We have, for n > 7 and 2k < n < 2k+l - 1: 

Remark. 

Proposition 4. We have HR = Hf+] ,  for all n 

8. Conclusion 

Let us come back to the initial question of the comparison of conditional block entropies 
for these sequences. We have HP < HT < HR, for n < 8. But, for n 9, this ordering 
does not hold. In particular, we have 

Let us note the following relationship between H," and H,' 

H; = H; = + < ~ g ' =  ;, 
In fact, we see that there is no relation of order between HR, HP and HT. From 
Proposition 4, we deduce that HR < H," and that for almost n ,  this inequality becomes an 
equality. More precisely, 

for n = 2k,  we have H,' = $, 
but for n # 2k, we have H,' = H,", 
Furthermore, we see that there is a kind of shuffle between the values of HR (and 

consequently of Hp) and the values of HT: 
for 2k + 1 < n < 3.2k-1, we have H: = $Ht = 4HP 3 " '  
and for 3.2"' + 1 < n < 2k+1, we have H,' = ZHR 3 n - 3  - ZHp n. 
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